Dimensional Properties of Fractional Brownian Motion
نویسندگان
چکیده
Let B = {Bα(t), t ∈ RN} be an (N, d)-fractional Brownian motion with Hurst index α ∈ (0, 1). By applying the strong local nondeterminism of B, we prove certain forms of uniform Hausdorff dimension results for the images of B when N > αd. Our results extend those of Kaufman [7] for one-dimensional Brownian motion. Running head: Dimensional Properties of Fractional Brownian Motion 2000 AMS Classification numbers: 60G15, 60G17.
منابع مشابه
Existence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
On the Two - Dimensional Fractional Brownian Motion
We study the two-dimensional fractional Brownian motion with Hurst parameter H > 1 2. In particular, we show, using stochastic calculus , that this process admits a skew-product decomposition and deduce from this representation some asymptotic properties of the motion.
متن کاملOn time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملSome Processes Associated with Fractional Bessel Processes
Let B = {(B1 t , . . . , Bd t ) , t ≥ 0} be a d-dimensional fractional Brownian motion with Hurst parameter H and let Rt = √ (B1 t ) 2 + · · · + (Bd t )2 be the fractional Bessel process. Itô’s formula for the fractional Brownian motion leads to the equation Rt = ∑d i=1 ∫ t 0 Bi s Rs dBi s + H(d − 1) ∫ t 0 s2H−1 Rs ds . In the Brownian motion case (H = 1/2), Xt = ∑d i=1 ∫ t 0 Bi s Rs dBi s is a...
متن کاملThree dimensional numerical study on a trapezoidal microchannel heat sink with different inlet/outlet arrangements utilizing variable properties nanofluid
Nowadays, microchannels as closed circuits channels for fluid flow and heat removal are an integral part of the silicon-based electronic microsystems. Most of previous numerical studies on microchannel heat sinks (MCHS) have been performed for a two-dimensional domain using constant properties of the working fluid. In this study, laminar fluid flow and heat transfer of variable properties Al2O3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006